Importance-Driven Expressive Visualization

Ivan Viola

Institute of Computer Graphics and Algorithms Vienna University of Technology

Motivation

Ivan Viola

outer and inner structure

Traditional Illustration

http://www.medigraphics.com/ http://www.khulsey.com/

- Model for Importance-Driven VisualizationValidation of feature visibility
- Thesis based on publications
 - IEEE Visualization 2004
 - ◆ IEEE TVCG 2005
 - SIGGRAPH 2005 Sketch
 - EG Tutorial on Illustrative Visualization

Importance-Driven Visualization

Model for Importance-Driven Visualization

[Viola et al. '04 '05]

importance-driven feature enhancement

- Determines the representation
- Automatic specification
 - Feature classification
 - Value range
 - Distance to other feature
 - Distance to focal point

User-steered assignment to segmented objects

Levels of Sparseness

Smooth transitions in representation

Opacity and Color Modulation

High importance: opaque, colorLow importance: transparent, desaturated

High importance: dense, small grid spacingLow importance: big grid spacing

High importance: low gradient magnitudeLow importance: high gradient magnitude

- Using different feature representations
- Using different rendering techniques

Sharp Levels of Sparseness

contour rendering

Importance Compositing

- Connects importance to levels of sparseness
- Focus features dense representation
- Context features
 - If occluding sparse representation
 - Else dense representation

Maximum importance projectionAverage importance compositing

Only feature with highest importance along the ray is rendered

Average Importance Compositing

- Occluding context information is suppressed
- Not entirely removed
- Sum-up importance of intersected features along the ray

Improving the Spatial Arrangement

Examples

maximum importance projection

average importance compositing

Visibility Validation

Visibility Validation

- Avg. imp. compositing preserves thickness
- Visibility of focus is not guaranteed
- Visibility validation useful for partial supression

Local Visibility-Preserving Imp. Compositing

Local Visibility-Preserving Imp. Compositing

average importance compositing

visibility preserving importance compositing

Global Visibility-Preserving Imp. Compositing

initial transfer function

equal visibility

Ivan Viola

Visibility Evaluation

Global Visibility-Preserving Imp. Compositing

Global Visibility-Preserving Imp. Compositing

initial transfer function

rind = 1.0 pulp = 2.0 seeds = 0.5

Applications

۳.

Lung Nodules Visualization

Visualization of MR Mammograms

VolumeShop: Interactive IDV

New focus+context visualization technique Importance specification Levels of sparseness Importance compositing Validation of feature visibility High potential of visualization applications New research possibilities

Thank you!

